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I D E A L  T E N S I L E  S T R E N G T H  O F  M E T A L S  O N  

T H E  B A S I S  O F  A G E N E R A L I Z E D  V A N  D E R  

W A A L S  E Q U A T I O N  

M. M. Martynyuk UDC 539.4.011.25:536.717 

On the basis of a generalized Van der Waals equation a method is developed to calculate the thermodynamic 

stability boundary of a condensed phase. For a number of metals the limits of ideal tensile strength during 

their uniform tension at T = 0 K, T = 293 K, and at the melting temperature are calculated. The character 

of the temperature dependence of the strength is considered. 

Ideal strength of metals is usually evaluated on the basis of concepts of strength of crystals [1, 2 ]. Below 

we consider this problem from notions of the thermodynamic stability of a liquid phase. This method can be justified 

by the fact that in the crystal- l iquid phase transition forces of intermolecular attraction change insignificantly and 

the ideal tensile strength of a liquid or amorphous phase is close to the strength of a crystal [3 ]. In order to calculate 

the strength of a liquid phase, use can be made of equations of state for liquids and gases, the simplest of which 

is the Van der Waals equation. 

Thermodynamic Stability Boundary of a Condensed Phase. To increase the accuracy of the Van der Waals 

equation, in [4, 5 ] we suggested its three-parametric modification 

R T  a 
p = . (1) 

V - b  v" 

The additional parameter n, introduced by us, determines the character of intermolecular attraction forces 

and the thermodynamic similarity of substances [5 ]. 

The thermodynamic stability boundary of the liquid phase (spinodal) [6 ] is determined by the condition 

(Op/OIOT -- 0. Having applied this condition to Eq. (1), we obtain the spinodal equation in V- and T-coordinates: 

T =  a n ( V - b )  2 (2) 
R V n+1 

Substitution of (2) into (1) gives the spinodal equation in p- and V-coordinates 

a [(n - 1) V -  nbl (3) 

p = V~+l 

To calculate the spinodal of the given substance by formulas (2) and (3), it is necessary to know values of 

the parameters a, b, n, which are usually calculated using parameters of a critical point [5 l; however for many 
metals this point is not determined accurately. In the present work, a, b, n for metals are calculated from the 

experimental results for the molar volume (density) of the liquid phase and the heat of its evaporation in the region 

of temperatures not higher than the normal boiling point. From Eq. (1) it follows that the molar evaporation heat 

is equal to [7 ] 
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TABLE 1. Parameters of the Generalized Van der Waals Equation 

Metal n b- 10 6, m3/mole a, J /mole-  (m3/mole) n-I 

Z n  

Pb 
A1 
Cu 
Fe 
Ni 
Pt 
Mo 
W 

1.644 
1.500 
1.357 
1.383 
1.395 
1.376 
1.310 
1.297 
1.264 

9.189 
18.36 
10.57 
7.158 
7.100 
6.781 
9.127 
9.037 
9.400 

43.74 
394.0 
1827 
1270 
1346 
1662 
4462 
5680 

10,270 
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Fig. 1. Diagram of s tates  of iron in the region of l iqu id-vapor  phase 
transition: 1) spinodal, 2) binodal, K, critical point, p, GPa; T, K. 

A -  n - l a  V n-tl 1 ] (V v ~_r +p - v ) ,  (4) 

/ 

where the index v refers to the vapor phase; V without an index is the liquid phase. 
In the region of low temperatures a vapor can be considered as an ideal gas; then  when pV,, = RT,  

Vv >>V, and pV<< RT,  from Eq. (4) it follows that 

a 

A = (n - 1) V n - 1  + R T .  (5) 

Under the same conditions Eq. (1) takes the form 

a R T  

C v - b  
(6) 

Having applied Eqs. (5) and (6) to the melting point and to the normal boiling point, we obtain: 

V1 V2 (rl - r2) (7) 
b =  

r 1 V  2 -- r z V  1 ' 

V 1 
n -  1 - ( 8 )  

r 1 (V 1 - b) ' 
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TABLE 2. Ideal Strength -Pso  of Metals with Uniform Tens ion  at T = 0 and Strength Parameters  at T = 293 K 

Metal 

Zn 

Pb 

A1 

Cu 

Fe 

Ni 

Pt 

Mo 

W 

-Ps0,  GPa 

8.33 

5.03 

10.3 

16.6 

20.4 

21.5 

17.8 

19.7 

23.3 

-Ps,  GPa  P~ Yo 
K T ' 

Vs. 106 , 

ma /mo le  

4.87 

3.19 

7.02 

11.5 

14.6 

15.4 

13.2 

14.8 

18.1 

7.92 

7.53 

8.90 

7.62 

8 .53  

8.54 

5.85  

6.03 

10.8 

21.3 

12.2 

8.18 

8 . 0 0  

7.64 

10.2 

10.1 

10.4 

v ~ -  vb y o , 
vb 

13.3 

12.9 

12.5 

11.9 

10.7 

10.7 

10.6 

10.2 

9.23 

a s, M P a / K  

5.27 

2.84 

5.20 

8.16 

9.20 

9.68 

7.46 

5.66 

8.45 

O'm, GPa  

1 . 6 6  

0.32 

2.67 

2.76 
6.42 

4.62 

3.70 

5.62 

7.24 

a = (n - 1) R T l r l V ~ 1 - 1  , (9) 

where r 1 -- A 1 / R T  1 - 1, r 2 = A 2 / R T  2 - 1. The  values of a, b, n, calculated from formulas (7)-(9) for a n u m b e r  

of metals,  are  given in Table  1. The data for T 1, T2, A1, A2, V1 are taken from [8 ] and for V2, from [9 ]. T h e  

calculation shows that for all t h e  metals tabulated in Table  1 the parameter  n < 2. 

From the system of Eqs. (5) and (6), written for two points on a saturat ion line, expressions of type  (8) 

and (9) follow also for the second point. Application of formulas  (8) and (9) to the normal  boiling point gives values  

which differ  from these presented in Table  1 by no more than  by 0.2% for n and no more than by 5~o for a. 

Figure 1 illustrates the p - T - d i a g r a m  for states of iron in the region of the l i qu id -vapor  transit ion. T h e  

spinodal of the liquid phase is calculated by means of a numerical  solution of Eqs. (2) and (3) at the values of n, 

b, a given in Table  1. The spinodal goes through the regions of negative and positive pressures and te rminates  at  

the critical point K. The parameters  of this point (Tcr = 8310 K, Pcr -- 271.6 MPa, Vcr = 43.1" 10 -6 ma/mole)  are  

found from formulas obtained in [5 ] at the same values of n, b, a. The  binodal is de te rmined  by extrapolat ion to 

the critical point of the experimental  data [8 ] for the t empera tu re  dependence of the saturated vapor pressure .  

Between the binodal and spinodal a region of a metastable liquid (an extended or superheated  liquid) is located.  

At the given temperature  the value of the pressure Ps on the spinodal defines the rupture  s trength limit of the  l iquid 

phase during its uniform tension (on a decrease in the pressure  with respect to the binodal) .  The  rupture of the  

liquid is manifes ted as an intense process of origination of homogeneous cavitation centers  when approaching the  

spinodal f rom the side of the region of the metastable liquid [6]. In cooling below the melting point ( u n d e r  

conditions that  eliminate a crystallization process) the supercooled liquid goes to the amorphous state; t he re fo re  in 

the region of low temperatures the value of -P s  determines the tensile strength limit of the amorphous phase.  

St rength of Metals at Characterist ic Points of the Tempera tu re  Scale. T h e  amorphous  phase has  the  

greatest  limiting tensile s trength -Ps0 at a temperature of absolute zero (see Fig. 1). According to Eqs. (2) and  

(3), this s t rength  is determined by the formula 

_ a (10)  - Ps0 -- ~-~" 

For  a number  of metals (Table 2) from formula (10) we calculated the ideal s t rength -Ps0 with un i fo rm 

tension at T ~ 0; by means of a numerical solution of Eqs. (2) and (3) we obta ined the values for the s t r eng th  

- P s  at T -- 293 K; in calculations we used the data for a, b, n from Table 1. When T = 293 K, the ratio of --Ps to 

the isothermal modulus of the bulk elasticity K T [10] for these  metals is equal to 6 - 9 ~ o .  For  T = 293 K f rom Eq. 

(2) we also calculated the molar volume on the spinodal V s and  from Eq, (1), the volume on the binodal Vb at  p = 

0. The  relative increase in the volume of the amorphous phase (V s - V b ) / V b  during its uniform tension at  the  

instant of rupture  is 9 - 1 3  %. 
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TABLE 3. Parameters  of Ideal Metal Strength at the Melting Point 

Metal 

Zn 

Pb 

AI 

Cu 

Fe 

Ni 

Pt 

Mo 

W 

TI, K 

629.7 

600.6 

933.3 

1357 

1809 

1726 

2042 

2890 

3680 

-Ps ,  G P a  Vs" 106, m3/mole  

3.32 

2.51 

4.80 

6.51 

7.45 

9.48 

7.07 

6.33 

7.48 

12.0 

22.0 

13.9 

9.92 

10.0 

9.48 

12.9 

13.8 

14.5 

V s -  Vb 
vb ' %  

20.1 

18.2 

22.0 

24.9 

25.9 

25.5 

25.6 

30.8 

31.9 

~S' M P a / K  

2.97 

1.80 
2.49 

3.01 

2.84 

3.08 
2.23 

1.76 

1.63 

From the elasticity theory [11 ] it follows that  the strength Ps during uniform tension and  

a m during uniaxial tension for isotropic solids (amorphous solids) are expressed by the formula 

the strength 

a m =  - Ps (l  - 2v) .  (I1) 

Table 2 presents values of a m calculated using the parameter  - P s  and data  for v from [10 ]. T h e  theoretical 

strength of metals a m during uniaxial tension at T = 293 K is comparable with the real s t rength of thread-l ike 

crystals; according to [1, 12 ], the  maximum values of a m (GPa) for these crystals are equal to: 0.89 for  Zn; 2.27 

for AI; 4.41 for Cu; 13.1 for Fe; 2.90 for Ni; 13.0 for W. The values o f o  m (Table  2) calculated by us are  also close 

to the experimental  data [13 ] obtained by a method  of rear  spall in the process of dynamic tension of metals: 4 

for Cu, 6.5 for Fe, 5.5 GPa for Ni. 

Table 3 presents  the results of calculations for the melting temperature  T1 of different metals: the strength 

- P s  and the molar volume Vs of the liquid phase on the spinodal. The  relative volumetric deformation (V s - Vb)/Vb 

during the rupture of liquid metals at this point amounts  to 2 0 - 3 0 % .  The  s t rength of metals - P s  is he re  2 - 3  times 

lower than the s t rength -Ps0 at T --- 0 (Table 2). 

Tempera ture  Dependence of the Strength.  As the temperature  rises, the spinodal curve form (see Fig. 1) 

shows a sharp decrease in the strength of the condensed  phase. In the region of low temperatures ,  when  the pressure 

on the binodal is close to zero, the strength of the liquid is equal to - P s  and its tempera ture  dependence  is 

characterized by a derivative along the spinodal a s -- d P s / d T  s. Differentiating Eqs. (2) and (3), we obtain 

n (12) 
ar - 

From Eq. (12) it follows that the temperature  s t rength  coefficient a s is inversely proportional to the free volume 

V s - b on the spinodal. When T = 0, a s = oo, since Vs = b. The values of a s for T = 293 K are p resen ted  in Table  

2 and for the melting point of metals,  in Table  3. 

At temperature  above the normal boiling point the tensile strength of the liquid is de te rmined  by the 

difference in the pressures Pb -- Ps" At a certain temperature  Ts, p _ o the pressure on the spinodal becomes equal 

to zero and the strength of the liquid at this point is numerically equal to the pressure of the sa tura ted  vapor. It 

follows from Eqs. (2) and (3) that this tempera ture  is determined by the formula 

(n- If (13) 
Ts,p =0 -- R b n - t  n 

rt 

The  volume on the spidonal at this point is 
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nb 
Vs,p =0 = n -  1" (14) 

According to Eqs. (12) and (14), the slope of the tangent to the spinodal is here of the form: 

R 
as,p=O - b (n - 1)" (15) 

When T >_ Ts,p=O, the pressure Ps on the spinodal is positive; as the temperature rises, the strength of the 
liquid Pb - Ps decreases and tends to zero on approaching the critical point K (see Fig. 1). 

N O T A T I O N  

p, pressure; V, molar volume; T, absolute temperature; R, gas constant; a, b, n, parameters of the 

generalized Van der Waals equation; A, molar heat of evaporation; r, dimensionless heat of evaporation; KT, 

isothermal modulus of the volumetric elasticity; a m, strength limit with uniaxial tension; v, Poisson coefficient; as, 
temperature strength coefficient with uniform tension. Subscripts: v, vapor; 1, melting point; 2, normal boiling point; 

cr, critical point; s, spinodal; b, binodal; m, maximum value; 0, absolute zero. 
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